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Abstract

!

The steady-state dynamic fields near a rapidly propagating crack tip

in an elastic perfectly-plastic material have been investigated for the case
of Mode-III fracture. For arbitrary values of the dimensionless crack-tip

, speed (M) the inner solution consists of a central-fan field ahead of the
.é crack tip and a uniform field in its wake. It is shown that the inner solution
is valid in a "boundary layer" which shrinks on the crack tip in the limit of
vanishing M. For small M the outer solution was found as a regular perturbation
expansion in M, with the quasi-static solution as its first term. A uniform
expansion over the polar angle 6 measured from the plane of the crack was also

obtained; its first term displays the connection between the inner and outer

solutions. .
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1. Introduction

In a recent paper the authors have investigated dynamic effects on the
fields of stress and strain near a rapidly propagating crack tip in an elastic
perfectly-plastic material [1]. For the steady-state case it was found that
the dynamic near-tip fields can be expressed as simple-wave solutions of the
governing system of hyperbolic partial differential equations. These solu-
tions are independent of the dimensionless distance to the crack tip, r/rp .
but they do depend specifically on the dimensionless crack-tip speed M. For
Mode-III crack propagation the simple-wave solution in the near-tip field is
a combination of a centered-fan field and a uniform field. Explicit
expressions have been presented in Refs.[1l] and [2].

The solutions that were obtained in Ref.[l] show some anomalies in the
transition from the dynamic to the quasi-static solution. As the crack-tip
speed, M, decreases the expressions for the stresses reduce to the ones for
the corresponding quasi-static solution, as might be expected on the basis of
intuitive reasoning. This is however not true for the strains, which become
unbounded in the limit of vanishing M. In Ref.[l] it was speculated that the
transition from dynamic to quasi-static conditions with decreasing crack-tip
speed 1s effected because the dynamic solution is asymptotically valid in a
small edge zone, which shrinks on the crack tip in the limit of vanishing
crack-tip speed.

In this paper this non-uniform transition has been investigated in detail
in the plane of the crack for the case of crack propagation in anti-plane

strain (Mode-III). It is shown that for small crack-tip speeds the complete

near-tip solution consists of the outer solution, which is a regular
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perturbation expansion in M, with the quasi-static solution as the first term,
and the inner solution, which is of completely different nature with a strong
influence of dynamic effects. The inner solution is valid in an edge-zone which
is analogous to a boundary layer. The first term in a uniform expansion over the
polar angle 6 measured from the plane of the crack displays the connection between
the inner and outer solutioms.

The governing equations and the boundary conditions are stated in Section 2.
The outer solution, its relation to the quasi-static solution, as well as its
inadequacy in the immediate vicinity of the crack tip have been discussed in
Section 3. The results for the inner solution have been summarized in Section
4. It is shown in Section 5, that certain functiong which define the fields for
small polar angle from the plane of the crack, satisfy a system of coupled
ordinary differential equations. An investigation of the singular points in
the phase plane and an inspection of the trajectories of the solutions of these
equations as the distance to the crack tip decreases, reveals that the expressions
of Section 4 do indeed provide the solution in an edge zonme. Exact solutions in
implicit form for the coupled ordinary differential equations mentioned above
have also been obtained in Section 5, and these solutions reproduce the inner
solution as well as the outer solution. Finally the coupled equations have
been solved numerically, and the results have been plotted vs. r/rp and M, to

show the transition of the inner solution in the edge zone to the outer solution

in the "far-field".
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2. Governing Equations

A coordinate system (x,y,z) is attached to the moving crack tip as shown
in Fig. 1. The assumption that a steady-state has been established relative to
the moving crack tip, implies that absolute time derivatives take the following

forms relative to the moving coordinate system:

3, () =-va (); 3. ) =v3 () .
In the moving coordinate system steady-state deformation in anti-plane strain
is defined by a displacement in the z-~direction, which is denoted by w(x,y).
The corresponding stress components are cxz(x,y) and cyz(x,y).
In view of (2.1b) the equation of motion becomes

30 _+930  =opoviy w
X xz vy yz XX

The Tresca yield condition is

02 +02_ =k2',
xz = yz

where k is the yield stress in shear. By virtue of (2.1la), the Prandtl-Reuss

equations for an elastic perfectly-plastic solid reduce to the forms

-1
dx? = W 3,0, - Ao,
-1
3xyw u axcyz - Aayz . A>0

Here u 1s the elastic shear modulus, and A is a non-negative proportionality
factor, which may vary in space.
In the region of plastic deformation the yield condition is identically

satisfied by

¢ = -k ginw , ¢ =k cosw
Xz yz

Elimination of A from (2.4) and (2.5), and the use of (2.2) and (2.6a,b) then

yields the following system of equations

(2.1a,b)

(2.2)

(2.3)

(2.4)
(2.5)

(2.6a,b)




2 B
cosw axm + sinw 3ym + M " axwx = 0

cosw 9 w_+sinw 3 w +l‘-am-0
X X yX u %X

where

W= 3w, and w_= 3w
x x y

M = v/ (u/p)%

The condition of vanishing oyz on the crack faces yields by virtue of (2.6b)

y =0, x <0: w=7/2
Displacement anti-symmetry relative to y = 0 implies that w = 0 for y = 0.
Hence w_ = 0, and thus by (2.6a)

y=0, x> O0: w=0

In the polar coordinate system shown in Fig. 1, (2.7) and (2.8) have

the forms

1
cos (w-9) Srm + - sin(w-90) aem +

M2 -1 -
+ " (cos® arwx T sind aer 0

1 _
cos (w-8) arwx + T sin(w-6) aewx +

k ( 093 - L- ine d,w) =0
+ X cosbd w - T sind 3w

3. Far-Field Solution

Let us consider regular series expansions for w and Vo with respect to
the "Mach number" M defined by (2.10)

w=w +Mo, +. ..
o

1

wx - wxo + wal + ...

2.7)

(2.8)

(2.9a,b)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(3.1)

(3.2)
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For the leading terms wo and Vo Ve obtain the following equations

- 1 - =
cos(wo 8) Brmo + r sin(mo e)aemo 0

1
cos(mo-e) arwxo + = sin(mo-e) aewxo +

k 1
+ n (cos6 armo - sineaewo) 0

These equations govern the quasi-static problem, which was discussed by
Chitaley and McClintock [ 3 1. For small values of r/rp (where rp defines the
boundary of the plastic domain) we obtain (see Ref.3 )

w =0
o

k r
Vo & 0 sind® &n (;;) + £(8)

where £(8) is an arbitrary function of 9.
It is of interest to examine the magnitude of the inertia term, Mzaxwx R

which would correspond to the quasi-static solution. By the use of (3.5) and

(3.6) we find

2 Sk M2, ooy _ £7(8) ‘
M axwx 3T [1 R.n(r ) <os e] sin26

On the other hand, if the stress derivatives appearing in Eq.(2.2) are computed
on the basis of (3.5) and (3.6), it is found that they vanish identically.
Equation (3.7) then suggests that the quasi-static approximatioﬁ is not valid
in a small neighborhood of the crack-tip defined by r/rp ~ 0(M?) (we shall

make a more accurate estimate in a later Section). The subsequent terms in the

gseries (3.1) and (3.2) do not remove this nonuniformity of the approximation.

(3.3)

(3.4)

(3.5)

(3.6)

(3.7




Thus the regular expansion with respect to M cannot be accepted in the
immediate vicinity of the crack-tip. It appears that this solution represents
an outer or "far-field" expansion.

4, Near-Field Solution

In a recent paper Achenbach and Dunayevsky [ 1 ] have shown that the
solution (m,wk) to Eqs.{(2.7) and (2.8) is either singular near the crack tip,
or it is represented by a centered fan-field in combination with a uniform
field. Since it was not possible to obtain a singular solution, the centered

fan + uniform field solution was considered in some detail. The solution was

obtained in the following form [ 1 , see also 2 ]:

*
0<96<8
. - 1
w_ = -k cos 1 [MsinZ6 + (1~Mzsin6)4cosB]
X ™

1
o, = -k[(i~M251n26)% ~ Mcos6] sind

N 1
oy, = k[ (1-M?81in26)? cos8 + Msin26)

*

O ™ -k , oyz =0, v, " ~kn/uM

where
6" = tan"l(1/M)

In the limit M - 0 the stress fields reduce to the corresponding quasi-
static fields. This is, however, not true fcr the strains, which become
unbounded as M +~ 0, Difficulties of this kind in the transition from the
dynamic to the quagi-static solution as M + 0 could have been anticipated
from the structure of the governing equations. As M + 0 the two distinct

families of characteristic curves of Eqs.(2.6) and (2.7), which are defined

by




dx
| dy cosw *

(4.6)

simw

merge into one family, defined by

dx
dy cosw 4.7

Such a degeneracy usually leads to a non~uniform transition, and the

appearance of a "boundary layer". Some examples are given by Cole [ 4 ].
Another indication of a non-uniform transition is giyen by the form of

the equations in the hodograph plane. To transform (2.7) and (2.8) to the

hodograph plane we introduce the following changes of variables [ 5].

w ow
i 3 _ gyl _x 3y _ _ 51 _x
i 50 J 3y Be - J o (4.8a,b)

3 _ _ 13w 3y _ -1 3w
_3"’x =-] 3y awx'J E (4.9a,b)

where J is the Jacobian

i J=3—xTy—_3_x—-3—}; (4.10)

In the hodograph plane Eqs.(2.7) and (2.8) take the form

, 3y _ 3 _ 2 k3y 4.1
; cosw wa sinw B M o B 0 (4.11)

b —cosw x  koy _ 4.12
: cosmsg + sinw 5= + m awx 0 (4.12)

! This linear system of equations can be reduced to a single equation of the

! second order

2 32 2
&2 |2 Yy M2t X - L U . (4.13)
o awi w2

3w sinw 3w
X




When M +~ 0 the second order derivative azy/awZ disappears, which indicates

that an asymptotic expansion with respect to M cannot be uniform.

On the basis of the foregoing observations it may be assumed that the
field near the crack tip is of different forms in two zones. The outer
solution in the "far field" 1s a regular expansion in M as given by (3.1) and
(3.2), where the leading term represents the quasi-static solution. The effect
of inertia is relatively small in this far-field. Inertia 1is, however,
important in the inner solution in the near field, represented by (4.1)~-(4.5).
The near-field can be thought of as a "boundary layer'. 1In the present
geometry the terminology "edge zone" is, however, more appropriate. In the
edge-zone the inertia effects appear to remove the singularity of the quasi-
static strain component.

In the next section we consider the matching of the inner solution and the

outer solution, and the shrinking of the edge-zone on the crack tip as M+ 0.
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5. Solution in the Plane of the Crack

Matching of the far-field and near-field solutions has not been accomplished
for arbitrary values of the polar angle 8. It is, however, possible to investi-

gate the matching for small values of 8, by seeking a solution in the following

form

= 3
m ml(r) 0+ w3(r) 8° + . ..

= 3
v wxl(r) 6 + wx3(r) 6% + . . .

Substitution of (5.1) into (2.3) and (2.4), and collecting the terms of equal

powers of 6 , gives for the first approximation the following equations

2 el e Fa va
dr r k dr T

-1) +‘5 (dwl ) w
u dr

dwxl wxl(wl
+
dr r

1

T)=0

At this stage it is useful to introduce new variables

J, = Mw +-E w, J = wa - w

+ x1 1 - 1

= |=

1

Inserting (5.5) into (5.3) and (5.4) we arrive at

= - X - =
(1H) ZTH+a) I - B (3,-7)3, =0

dJ
-M) — -M)J -5 .- =
M) o+ G-MI -5 (3-I ) =0

where the following change of variables has been used
= -n(r/r
a n(/p)

Let us consider the solutions to Eqs.(5.6) and (5.7) in the phase plane

(5.1)

(5.2)

(5.3)

(5.4) |

(S.Sa,ﬁ

(5.6)

(5.7

(5.8)
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(J+,J_). The singular points are the solutions to the following equations
U = .
(1+M)J+ o (J+ J_)J+ 0 (5.9)
u_ - =
(-3 - 5 ,-3)3_=0 (5.10)
Equations (5.9) and (5.10) define three singular points, whose position and
character are given by
1) J+ =J_=0; stable focus (5.11)
_ _ 2k
2) J_=0; J+ = (14M) T unstable node (5.12)
_ _ 2k
3) I, = 0; J_=-(1-M) T saddle point (5.13)

The nature of the singular points given by (5.11)-(5.13) determines the phase
flow pattern, i.e., the trajectories of the solutions as a varies, shown in
Fig. 2 (see e.g. Ref. [ 6]).

Since no limit cycle or center point exists, the trajectories beneath the
separatrix line AA” run towards infinity as o - @ (r+0). Along these lines

J+ and J_ , and consequently w, and w become unbounded. However infinite

1 x1’

growth of w, leads to an oscillation of the stress field (with increasing

1
frequency) which is not admissible from the physical point of view. Thus this
domain of the phase plane falls outside our consideration.

The phase flow above the separatrix line AA” tends to the origin Iy = J_=0
so that for a » @ (r+0) we have J+ +~ 0, J_ + 0, and consequently wy > 0,
L e 0. This result would correspond to a uniform zero field ahead of the
crack tip. The hyperbolicity of the governing equations (2.7) and (2.8) then

would imply a zero field for the whole loading domain, which does, however, not
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satisfy the boundary condition on the crack faces and therefore has to be
rejected.

Thus we have no other alternative but the trajectory along the
separatrix AA” . There is however a "forbidden" region in the phase plane
which is defined by the conditiom A > 0. It follows from (2.4), (2.5) and

(5.1), (5.2) that

Yx1
A (5.14)

The requirement A > 0 leads to the inequality

sy % - e (HT) 20 ‘(5.15)
which implies that we have to consider the part of the separatrix which lies
to the left of the bisector J+ =-J .
Thus, when o + « (r+0) the solution moves along the line AA” toward the .
point 3. Let us now find the solution in the neighborhood of the point 3.

Linearization of Eqs.(5.6) and (5.7) near this point leads to the following

equations
4Jy o
I T J+ . (5.16)
dJ_ 2K
rrafali J+ +J_+ (1-M) T (5.17)

In terms of the variable r the solution has the form

1+3M 2M/ (1)
J+ = C M (r/rp) (5.18)

2M/ (14+4)

3= aan Xy cx/x) (5.19)

where C 1s an arbitrary constant and (5.8) has been used. Hence by virtue of

(5.5) we obtain

et o o



1+5M ()t )ZM/(1+M)
4M

w =-—(1M)+C

x1

- 1o _u 1+M
Wy 1M+C2k 2M(r/rp)

2M/ (14M)

Hence we have

0, = (1-M)8 + 0 [<r/rp>"'“’ (1+4),

W 2M/ (14M) ]

k
6 = - o (1-M)8 + O [(r/rp)

x ~ ¥x1
The dominant terms of the expressions (5.22) and (5.23) coincide with those of
the expansion of the near field, (4.1) and (4.4), for small 6. This result
confirms the validity of the simple wave solution near the crack tip.

Equations (5.6) and (5.7) can be integrated to yield the following
solution in implicit form

I, =A (r/rp)m’(l"“’ |g_| -0/ (4D (5.26)

24/ (144) -2/ (1-M) Lv; 455 & )‘1 (5.25)

P

1+ 1M r
F, o, 1t om, "B (rp) l.J-l ) - 1w 21<

Here A and B are constants of integrations and F(p,q,r,s) is the hypergeometrical
function. The trajectory along the separatrix AA“ corresponds to B = 0. This
follows from the observation that the separatrix crosses the line J+ = 0 at the
point 3, which is defined by (5.13)

It can now be verified that for (r/rp) + 0, (5.24) and (5.25) yield

e

J+ + 0 and J_ + (2k/u) (1-M), which correspond to w > 1-M and LA T =(k/uM) (1-M).

These results agree with (5.20) and (5.21).

~ et

Next we consider (5.24) and (5.25) in the limit M + 0. It is noted from
(5.5) that for M = 0 we have J+ = -J . Since J_ < 0, the constant A in (5.24)

must equal unity: A = 1. For M ¥ 0, the combination of (5.5a,b) and (5.24)

Ty ey o T P




then yields

k M Kk
Zn(wal+um) T » ()+—£n|wa1 u"’l

To expand (5.26) for small M we require r/rp‘> § where 8§ is such that

-m &) -0
P

Equation (5.26) then yields

v, l:w [zn(fp) - JLn(L:m)] + 0(M)

In deriving this expression, it was taken into account that J_< 0.

For the hypergeometrical function in Eq.(5.25) we find for small M

F(L 144 L+ 14M _ GE )2M/1+M lJ I-ZM/1+M) .
> M, M, r -
P
1M 1+M - 2 2
F(1, ZM , 1l + — ™M , 1) + 0(M*%) = M B( ) + 0(M<)
Here B(x) is the R-function
-]
1 nt 1
B(x) == L -
2 n=0 x(x+1l) ... (x+k) 0

By virtue of (5.29), (5.30) and (5.25) we obtain for M0

%+ 0 = - B oma_ : @)

For (r/rp) > § the formulas (5.26) and (5.31) imply

- Xt &) + 3
P

w, ~ 1, w

1 x1

This result agrees with the quasi-static solution given by (3.5)-(3.6), which

coincides with the dominant terms of the outer solution for small 6, as

given by (3.1)-(3.2).

13

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)
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To follow in some detail the phase flow when M + 0 it is convenient to
consider the (wx,w) phase plane shown in Fig. 3. The point of intersection of
the separatrix AA” with the w-axis should be located between 1-M and 14+M. The

angle vy of intersection of the J+7 and J_-lines, is given by

y=1~2 tan_l(I/M),
which tends to zero when M + 0. The abscissa of the saddle point 3 is
= 1-M and the abscissa of the node 2 is w

w = 14M, which both tend to 1 as

3 2
M + 0. Thus the singular points 2 and 3 shift to infinity as M+ 0. For M = 0
the phase flow has degenerated as shown in Fig. 4. The separatrix has turned
into a straight line which is parallel to the wx-axis and has the abscissa

w = 1. The magnitude wx has become unbounded along this line.

1
In summary, for small values of the angle 8 the solution given by (5.24)
and (5.25) matches the near field (4.1) and (4.3) to the far field (3.5) - (3.6)
for small values of the angle 8 . The region defined by ln(r/rp) ~ O(M-l) can
be identified as an edge zomne.
The implicit form of (5.24) and (5.25) is not convenient for the computation

of curves. Equations (5.6) and (5.7) have, therefore, been solved numerically.

The function

LA = (J+ + J_)/ZM

has been plotted in Fig. 5. The corresponding quasi-static solution, which is
indicated by M = 0, has also been plotted. The quasi-static solution for LAY
is singular at r/rp = 0, while the dynamic solution remains bounded. The
curve for M = 0.01 is very close to the one for M = 0, i.e., to 2n(r/rp), in

the region r/rP > §, where § 1s the "length" of the edge zone in the plane of

the crack. An estimate of the length of the edge zone is ‘indicated in Fig. 5.
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Fig. 2 Phase plane with singular points, for Eqs. (5.6) and (5.7)
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% Fig. 3 Phase plane (m,wxl) with singular points for Eqs.(5.3) and (5.4)
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Fig. 4 Degenerated phase plane for M = 0
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